Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

N-Hydroxysuccinimide (NHS)-ester derivatives are widely used reagents in biological chemistry and chemical biology. Their efficacy relies critically on the exclusive chemoselectivity of activated acyl over that of the imidic acyl moieties in the succinimide. Here, through systematic structural variation that modulates acyl reactivity, coupled with a statistically controlled ultra-rapid screen for unknown modifications in tandem mass spectra as well as lysine profiling across complex lysine environments, including those within proteomes containing many thousands of proteins, we reveal that ring-opening to afford N-succinamide derivatives is a present, sometimes dominant, side-reaction. The extent of side-reaction is shown to be site-dependent, with side-reaction and desired reaction occurring within the same protein substrate. The resulting formation of bioconjugates with unintended, unstable linkages and modifications suggests the re-evaluation of: (i) known commercial reagents; and (ii) functional conclusions previously drawn using NHS esters in areas as diverse as antibody-drug biotherapy, vaccination and cross-link-enabled structural analyses.

Original publication

DOI

10.1038/s41467-025-60527-5

Type

Journal article

Journal

Nat Commun

Publication Date

01/07/2025

Volume

16

Keywords

Succinimides, Esters, Lysine, Acylation, Proteins, Indicators and Reagents, Humans, Tandem Mass Spectrometry